

GTC International Consulting Limited Riverbank House 1 Putney Bridge Approach Fulham, London, SW6 3BQ T: +44(0)2037055710 E:enquiries@thegtcgroup.com W: www.thegtcgroup.com

Aerospace Materials & Structural Integrity

COURSE OVERVIEW

This advanced course delves into the critical relationship between material selection, structural design, and the long-term durability of aerospace vehicles. It goes beyond fundamental material properties to focus on the structural integrity of airframes and components under operational loads and harsh environments. The course emphasizes a damage-tolerant approach to design and maintenance, critical for both new development and legacy platform sustainment. Participants will explore the mechanisms of material degradation, advanced analysis techniques for predicting component life, and the regulatory frameworks that ensure safe operation throughout an aircraft's lifecycle.

WHO SHOULD ATTEND?

This course is ideal for aerospace engineers, materials engineers, structural analysts, and design engineers working with aircraft or spacecraft components. It also suits quality assurance and maintenance professionals, R&D engineers, and technical managers responsible for material selection, structural design, fatigue analysis, and ensuring the integrity, safety, and performance of aerospace structures.

COURSE OUTCOMES

Delegates will gain the skills and knowledge to:

- Evaluate the mechanical and physical properties of advanced aerospace materials (e.g., Al/Li alloys, Ti-alloys, polymer composites, ceramics) for specific applications.
- Analyze the primary structural failure mechanisms in aerospace, including fatigue, fracture, corrosion, and creep.
- Apply principles of fracture mechanics and damage tolerance analysis to predict crack growth and determine inspection intervals.
- Understand the certification requirements and safety regulations governing aircraft structural integrity (e.g., FAA & EASA CS 25.571).
- Develop a rationale for material selection and maintenance strategy based on a holistic view of performance, lifecycle cost, and operational requirements.

KEY COURSE HIGHLIGHTS

At the end of the course, you will understand;

- Selection criteria for aerospace materials based on strength-to-weight ratio and environmental resistance.
- Properties and applications of metals, composites, ceramics, and superalloys in aerospace structures.
- Stress, strain, fatigue, and fracture mechanics affecting material performance and integrity.
- Effects of manufacturing processes on material behavior and structural reliability.
- Methods for damage tolerance, crack growth analysis, and fatigue life prediction.
- Quality assurance, testing standards, and best practices for ensuring structural safety and durability.

All our courses are dual-certificate courses. At the end of the training, the delegates will receive two certificates.

- 1. A GTC end-of-course certificate
- 2. Continuing Professional Development (CPD) Certificate of completion with earned credits awarded

